Bioquímica - Proteínas

5 - Proteínas

Proteínas (do grego proteios, primeiro, fundamental) são polipeptídeos resultantes da união de dezenas ou centenas de aminoácidos. O critério para caracterizar se um polipeptídeo é também uma proteína é variável, segundo classificação de diversos autores. Muitos consideram que todo polipeptídeo resultante da união de pelo menos 70 aminoácidos é também uma proteína. Outros preferem considerar como proteínas os polipeptídeos com peso molecular a partir de 6 000 Daltons (1 Dalton é igual à massa de um átomo de hidrogênio). Embora existam controvérsias, pode-se concluir que toda proteína é um polipeptídeo, mas nem todo polipeptídeo é uma proteína.

Pode-se dizer também que as proteínas são polímeros de aminoácidos. Polímeros são macromoléculas formadas pela união de muitas unidades menores e semelhantes, chamadas genericamente de monômeros. No caso das proteínas, os monômeros são os aminoácidos.

As proteínas são formadas por apenas 20 tipos diferentes de aminoácidos. Em algumas, além dos aminoácidos, encontra-se um outro constituinte, chamado genericamente de grupo prostético. O grupo prostético pode ser um carboidrato, um lipídio, um ácido nucleico, um mineral, etc. Assim, podem-se classificar as proteínas em dois grupos: proteínas simples e proteínas conjugadas.

• Proteínas simples são aquelas constituídas apenas de aminoácidos. É o caso, por exemplo, da queratina, proteína encontrada na pele, nos cabelos, nas unhas, nos cascos e chifres de animais e que exerce importante papel na impermeabilização dessas estruturas.

• Proteínas conjugadas (complexas) são aquelas que contêm outras substâncias além de aminoácidos. A porção constituída de aminoácidos de uma proteína conjugada é chamada de apoproteína, enquanto a parte constituída pela substância diferente de aminoácidos é chamada de grupo prostético.

A hemoglobina, encontrada no sangue de muitos animais, é um exemplo de proteína conjugada que tem como grupo prostético o pigmento heme, no qual há íons de ferro.

De acordo com a natureza química do grupo prostético, as proteínas conjugadas podem ser distribuídas em diversos grupos. Veja os exemplos a seguir:

A molécula proteica pode ser formada por uma ou mais cadeias polipeptídicas, podendo apresentar as seguintes estruturas:

  • Estrutura primária da proteína – É a sequência linear de seus aminoácidos, sendo muito importante para a função que a proteína irá desempenhar. Essa sequência de aminoácidos é determinada geneticamente. A estrutura primária de uma proteína é mantida por ligações peptídicas, no entanto as moléculas de proteínas não são como fios esticados, arranjando-se em uma configuração tridimensional estável.

  • Estrutura secundária da proteína – Pode ter duas formas básicas: a alfa-hélice (com configuração helicoidal) e a folha-beta (pequenos segmentos que se arranjam paralelamente entre si). A estrutura secundária é mantida por pontes de hidrogênio entre átomos de aminoácidos que estão próximos ao longo da cadeia.

  • Estrutura terciária da proteína – É resultante da atração entre radicais de aminoácidos localizados em regiões distantes da molécula, levando ao dobramento da estrutura secundária (alfa-hélices e folhas-beta) sobre si mesma, dando à molécula um aspecto mais globular.

  • Estrutura quaternária da proteína – É a união de duas ou mais cadeias polipeptídicas, iguais ou diferentes, formando uma única molécula proteica.

Por exemplo: a molécula de hemoglobina humana é constituída por quatro cadeias polipeptídicas (α1, α2, β1 e β2) unidas entre si pelos grupos heme.

Hemoglobina humana - As quatro unidades da molécula de hemoglobina, duas unidades alfa ( α 1 e α 2) e duas unidades beta (β 1 e β 2)

Altas temperaturas, alterações bruscas do pH e altas concentrações de certos compostos químicos (ureia, por exemplo) podem modificar a configuração espacial das proteínas, fazendo com que suas moléculas se desenrolem e alterem sua configuração nativa (configuração tridimensional original da molécula). Essa modificação da configuração nativa de uma proteína é denominada desnaturação.

O processo de desnaturação é, via de regra, irreversível. Às vezes, entretanto, a desnaturação pode ser reversível, especialmente se foi causada pela ruptura de forças fracas. Nesse caso, se os desnaturantes químicos são removidos, a proteína retorna a sua configuração nativa e a sua função normal. Fala-se, então, que houve renaturação.

As proteínas sintetizadas no organismo desempenham as seguintes funções:

• Estrutural – Muitas proteínas participam da formação de importantes estruturas no organismo. A membrana plasmática, película que reveste e protege a célula, é um exemplo de estrutura formada basicamente por lipídios e proteínas. Outro exemplo é o colágeno, proteína que confere resistência aos ossos, tendões, cartilagens e outras estruturas do organismo.

• Hormonal – Muitos hormônios (substâncias reguladoras) são de natureza proteica. É o caso, por exemplo, da proteína insulina (hormônio produzido no pâncreas e que atua no controle da taxa de glicose no sangue).

• Defesa – Um dos mecanismos de defesa do organismo é realizado por proteínas especiais, denominadas imunoglobulinas (Ig), conhecidas também por anticorpos. Quando um antígeno (proteína estranha ao organismo) penetra em nosso corpo, o nosso sistema imunológico (sistema de defesa) procura elaborar um anticorpo específico para neutralizá-lo.

• Contração muscular – Actina e miosina são proteínas indispensáveis para a ocorrência das reações de contração muscular.

• Coagulação sanguínea – A coagulação sanguínea é resultado de uma série de reações químicas que culminam com a formação do coágulo, isto é, o endurecimento do sangue. Dessas reações participam várias substâncias, e, entre elas, algumas são proteínas, como a tromboplastina, a protrombina e o fibrinogênio.

• impermeabilização de superfícies – A proteção e impermeabilização de nossa pele, unhas e pelos, por exemplo, é feita pela proteína queratina (ceratina).

• Transporte de gases respiratórios – O oxigênio (O2) é transportado dos nossos pulmões para as demais partes do organismo pelas moléculas de hemoglobina existentes no interior dos glóbulos vermelhos (hemácias). Um certo percentual de gás carbônico (CO2) produzido nos tecidos é transportado até os pulmões, a fim de ser eliminado do organismo, também pela hemoglobina e por algumas proteínas plasmáticas (proteínas existentes no plasma sanguíneo). Essas proteínas transportadoras dos gases respiratórios (O2 e CO2) são conhecidas, genericamente, por pigmentos respiratórios.

A hemoglobina, portanto, é um exemplo de pigmento respiratório.

• Enzimática – Enzimas são catalisadores orgânicos que aceleram as reações do metabolismo, isto é, tornam as reações mais rápidas. A maioria das enzimas é de natureza proteica, isto é, são proteínas.

Referências:

  • JUNQUEIRA, Luis C. & CARNEIRO, J. "Biologia Celular e Molecular". Editora Guanabara Koogan, Rio de Janeiro, 1991. 5ª Edição. Cap. 1.

  • OLIVEIRA, Óscar; RIBEIRO, Elsa & SILVA, João Carlos "Desafios Biologia". Editora ASA, Porto, 2007. 2ª Edição. Cap.1.

  • AMABIS, JOSÉ MARIANO; MARTHO, GILBERTO RODRIGUES. Volume 1: Biologia das células – 3. Ed. – São Paulo: Moderna, 2010.

  • NELSON, D. L.; COX, M. M. Lehninger: Princípios de Bioquímica. 3ª ed., Sarvier, 2003